Private Blockchain & PBFT

Daegeun Yoon

KAIST, Electrical engineering department

2019/03/13

Overview

* Private Blockchain
e Understanding Private Blockchain
* Hyperledger Project

* PBFT
* FLP Impossibility
* Two Generals Problem & Byzantine Generals Problem
* Byzantine Fault Tolerance
* Practical Byzantine Fault Tolerance

* Hyperledger Fabric
e Architecture
* Transaction Flow
* Consensus

Private Blockchain Overview

Blockchain in Enterprises

e Public Blockchain
oL ow-pertermance

= V/isible to gl Not appropriate for enterprises purpose!

group

Public Blockchain Network

Blockchain In enterprises

* Private Blockchain
e Better performance
* Centralized governance
* Visible to authorized users
* Writable by authorized users

Authorized
group

Private Blockchain Network >

Case

 What if Alice company, the stakeholders, and SEC
establish the consortium to watch over Alice
company’s account ledger?

In the case of legacy database

* Hard to find any evidence of cheating
e Alice may operate the account ledger DB
* |t will be easy to modify the account ledger

DB for Account Ledger
' 4 4

Alice company SEC Stakeholder

In the case of public blockchain

 Clear evidence of any changes or modifications
since all data are recorded and modified under the

consortium’s agreement, but...
* Poor performance
* Anyone can have access to sensitive data

Public Blockchain Network

In the case of private blockchain

 Clear evidence of any changes or modifications
since all data are recorded and modified under the

consortium’s agreement, and

* Better performance

* Only authorized organizations have access to the
data

Private Blockchain Network

Hyperledger Project

Hyperledger Frameworks
Hyperledger Tools

10

Hyperledger Project

* Hyperledger is an open source collaborative effort
created to advance cross-industry blockchain
technologies.

 Many Hyperledger projects are actively being
developed by IBM

7
&7 HYPERLEDGER

—

| Frameworks |
B T HYPERLEDGER :.";., HYPERLEDGER HYPERLEDGER + HYPERLEDGER HYPERLEDGER m HYPERLEDGER
BURROW <% FABRIC GRID $ INDY IROHA & SAWTOOTH
Permissionable Permissioned WebAssembly-based Decentralized Mobile application Permissioned &
smart contract with channel support project for building identity focus permissionless support;
machine (EVM) supply chain solutions EVM transaction family
"I" HYPERLEDGER HYPERLEDGER < HYPERLEDGER <» <> HYPERLEDGER III HYPERLEDGER + HYPERLEDGER
CALIPER CELLO ©& cOMPOSER WWEXPLORER gam QUILT SR URSA
Blockchain framework As-a-service Model and build View and explore data Ledger Shared Cryptographic
benchmark platform deployment blockchain networks on the blockchain interoperability Library 11

Hyperledger Frameworks

* Hyperledger Business blockchain frameworks

—

@ HYPERLEDGER

— —
| Frameworks |

/[_ HYPERLEDGER a.‘;~ HYPERLEDGER HYPERLEDGER * HYPERLEDGER HYPERLEDGER M HYPERLEDGER
BURROW “% FABRIC GRID $ INDY IROHA & SAWTOOTH
Permissionable Permissioned WebAssembly-based Decentralized Mobile application Permissioned &
smart contract with channel support project for building identity focus permissionless support;
machine (EVM) supply chain solutions EVM transaction family

+ HYPERLEDGER j‘ HYPERLEDGER 8 HYPERLEDGER ~» ~» HYPERLEDGER "I HYPERLEDGER + HYPERLEDGER
CALIPER CELLO 2 COMPOSER .“l EXPLORER mmm QUILT h URSA
Blockchain framework As-a-service Model and build View and explore data Ledger Shared Cryptographic
benchmark platform deployment blockchain netwaorks on the blockchain interoperability Library

12

Hyperledger Tools

* Software used for deploying, maintaining, and
examining blockchain networks

R
47 HYPERLEDGER

| Frameworis |

/]_\ HYPERLEDGER ..‘;~ HYPERLEDGER HYPERLEDGER * HYPERLEDGER HYPERLEDGER M HYPERLEDGER
BURROW “% FABRIC GRID $ INDY IROHA & SAWTOOTH
Permissionable Permissioned WebAssembly-based Decentralized Mobile application Permissioned &
smart contract with channel support project for building identity focus permissionless support;
machine (EVM) supply chain solutions EVM transaction family
+ HYPERLEDGER j‘ HYPERLEDGER @ HYPERLEDGER ~» =» HYPERLEDGER "I HYPERLEDGER + HYPERLEDGER
CALIPER CELLO ¥¢ COMPOSER WM EXPLORER gum QUILT SR URSA
Blockchain framework As-a-service Model and build View and explore data Ledger Shared Cryptographic
benchmark platform deployment blockchain networks on the blockchain interoperability Library

* Most projects have not reached v1.0 yet

13

PBFT

FLP Impossibility

Two Generals’ Problem

Byzantine Generals’ Problem
Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance

14

FLP impossibility

FLP Impossibility

* Paper
* Impossibility of Distributed Consensus with One Faulty
Process, by Fischer, Lynch, and Paterson (1985)

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts
AND

MICHAEL S. PATERSON

University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may be
unreliable. The problem is for the reliable processes to agree on a binary value. In this paper, it is shown
that every protocol for this problem has the possibility of nontermination, even with only one faulty
process. By way of contrast, solutions are known for the synchronous case, the “Byzantine Generals™
problem,

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks): Network Protocols-
protocol architecture; C.2.4 [Computer-Communication Networks]: Distributed Systems-disiributed
applications; distributed databases; network operating systems; C.4 [Performance of Systems): Reliabil-
ity, Availability, and Serviceability; F.1.2 [Computation by Abstract Devices]: Modes of Computation-
parallelism; H.2.4 [Database Management]: Systems—distributed systems; transaction processing

General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Agreement problem, asynchronous system, Byzantine Generals
problem, commit problem, consensus problem, distributed computing, fault tolerance, impossibility 16
proof, reliability

FLP Impossibility

* Validity (Safety)

* The value agreed upon must have been proposed by
some

e Agreement (Safety)
* All deciding processes agree on the same value

* Termination (Liveness)
* At least one non-faulty process eventually decides

* Distribute consensus is impossible when at least
one process might fail
* Choose at most two!

17

FLP Impossibility

* Liveness over Safety
» ex) Proof of Work (e.g. Bitcoin, Ethereum, etc.)
* Lottery-based algorithm
* The longest chain rule (Liveness 1)
* The longest chain can be wrong (Safety {)

» Safety over Liveness
e PBFT (e.g. Tendermint, Hyperledger Indy, etc.)
* Voting-based algorithm
 Block after consensus is hard to be modified (Safety 1‘)
* Transactions may not be delivered (Liveness)

18

Two Generals’ Problem &
Byzantine Generals’ Problem

Two Generals’ Problem

* “Some Constraints and Tradeoffs in The Design of
Network Communications”, E. A. Akkoyunlu, K.
Ekanadham, and R. V. Huber (1975)

SOME CONSTRAINTS AND TRADEOFFS
IN THE DESIGN OF
NETWORK COMMUNICATIONS®

E. A. Akkoyunlu
K. Ekanadham
R. V. Hubert
Department of Computer Science
State University of New York at Stony Brook

A number of properties and features of interprocess communication systems are presented,
with emphasis on those necessary or desirable in a network environment. The interactions. between
these features are examined,. and.the consequences.of.their. inclusion in a system are explored.

Of special interest are the time-out feature which forces all system table entries to "die of
old age' after they have remained unused for some period of time, and the insertion property
which states that it is always possible to design a process which may be invisibly inserted

into the communication path between any two processes. Though not tied to any particular system,
the discussion concentrates on distributed systems of sequential processes (no interrupts)

with no system buffering.

Key Words and Phrases: interprocess communication, computer networks, ports.

CR Categories: 3.81, 4.32, 4.39

20

Two Generals’ Problem

* Two generals need to attack the enemy at the same
time
* Consensus message is sent across the enemy’s territory

e A sends B the consensus msg

* A has no way of knowing if the
message was received by B

* A has no way of knowing if the
message was forged by the
enemy

* B sends A the response message

* B also has no way of knowing if
the message was received by A

* B also has no way of knowing if : _ Consensus
the message was forged by the | Msg
Enemy

* No way to reach consensus
between A and B 21

BGP (Byzantine Generals Problem)

* "The Byzantine Generals Problem*®, Lamport, L,;
Shostak, R.; Pease, M. (1982). ACM Transactions on
Programming Languages and Systems

The Byzantine Generals Problem

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE
SRI International

Reliable computer systems must handle malfunctioning components that give conflicting information
to different parts of the system. This situation can be expressed abstractly in terms of a group of
generals of the Byzantine army camped with their troops around an enemy city. Communicating only
by messenger, the generals must agree upon a common battle plan. However, one or more of them
may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that
the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is
solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound
two loyal generals. With unforgeable written messages, the problem is solvable for any number of
generals and possible traitors. Applications of the solutions to reliable computer systems are then
discussed.

Categories and Subject Descriptors: C.2.4. [Computer-Communication Networks]: Distributed
Systems—network operating systems; D.4.4 [Operating Systems]: Communications Management-—
network communication; D.4.5 [Operating Systems]: Reliability—fault tolerance

General Terms: Algorithms, Reliability
Additional Key Words and Phrases: Interactive consistency

22

BGP (Byzantine Generals Problem)

* More than two generals need to attack the enemy

at the same time

* Same problems as the Two Generals’ Problems

T !
=
o~

¢ !

t
!\\,

b

Coordinated Attack Leading to Victory

Uncoordinated Attack Leading to Defeat

23

Practical Byzantine Fault
Tolerance

BFT (Byzantine Fault Tolerance)

* Byzantine Fault

* May represent general attack on the system or system
error

* Byzantine Failure
* The loss of a system service due to Byzantine Fault

* Byzantine Fault Tolerance
* A system that is resilient/tolerant of a Byzantine Fault

25

PBFT (Practical Byzantine Fault Tolerance)

* Paper

* "Practical Byzantine Fault Tolerance and Proactive
Recovery”, Castro, M.; Liskov, B. (2002). ACM
Transactions on Computer Systems.

Practical Byzantine Fault Tolerance
and Proactive Recovery

MIGUEL CASTRO

Microsoft Research

and

BARBARA LISKOV

MIT Laboratory for Computer Science

Our growing reliance on online services accessible on the Internet demands highly available sys-
tems that provide correct service without interruptions. Software bugs, operator mistakes, and
malicious attacks are a major cause of service interruptions and they can cause arbitrary behav-
ior, that is, Byzantine faults. This article describes a new replication algorithm, BFT, that can be
used to build highly available systems that tolerate Byzantine faults. BFT can be used in practice
to implement real services: it performs well, it is safe in asynchronous environments such as the
Internet, it incorporates mechanisms to defend against Byzantine-faulty clients, and it recovers
replicas proactively. The recovery mechanism allows the algorithm to tolerate any number of faults
over the lifetime of the system provided fewer than 1/3 of the replicas become faulty within a small
window of vulnerability. BFT has been implemented as a generic program library with a simple
interface. We used the library to implement the first Byzantine-fault-tolerant NFS file system,
BFS. The BFT library and BFS perform well because the library incorporates several important
optimizations, the most important of which is the use of symmetric cryptography to authenticate
messages. The performance results show that BFS performs 2% faster to 24% slower than produc-
tion implementations of the NFS protocol that are not replicated. This supports our claim that the
BFT library can be used to build practical systems that tolerate Byzantine faults.

Categories and Subject Descriptors: C.2.0 [Comp C ication Networks|: General—
Security and protection; C.2.4 [Comp C ication Networks|: Distributed Systems—
Client /server; D.4.3 [Operating Systems]: File Systems Management; D.4.5 [Operating Sys-
tems]: Reliability—Fault tolerance; D.4.6 |Operating Systems]: Security and Protection—
Access controls; authentication; cryptographic controls; D.4.8 [Operating Systems]|: Perfor-
mance—Measurements

General Terms: Security, Reliability, Algorithms, Performance, Measurement

Additional Key Words and Phrases: Byzantine fault tolerance, state machine replication, proactive
recovery, asynchronous systems, state transfer 2 6

PBFT (Practical Byzantine Fault Tolerance)

e System Model
* Allows asynchronous network
Possible faults
* failure to deliver messages
* delayed messages
 delivery out of order
* Byzantine faults
Node failure is independent
* Assume eventual time bounds for liveness

N = 3f+1, N = # of nodes in the network, f = # of Faulty
nodes

27

Why N = 3f+1?

e Assume N =2f+1,f=1

* Client is waiting for f+1 responses

& . bool(x)

Client

28

Why N = 3f+1?

e Assume N =2f+1,f=1

* Client is waiting for f+1 responses

system error!
bool(x) =? bool(x) = true

29

Why N = 3f+1?

e Assume N =2f+1,f=1

* Client is waiting for f+1 responses

Byzantine

bool(x) = False

30

Why N = 3f+1?

e Assume N=3f+1,f=1

* Client is waiting for f+1 responses

bool(x) = true bool(x) = true

Byzantine
bool(x) = True bool(x) = False

31

Why N = 3f+1?

e Assume N=3f+1,f=1

* Client is waiting for f+1 responses

bool(x) = true bool(x) = true

Byzantine

bool(x) = False

32

Why N=3f + 17

 When the message is not sent
e Consensus should be reached among (N-f)
* f = node whose message is not sent

* When the message is sent with wrong information
* Consensus can be reached only when N-f-f > f
* f = node whose message has wrong information
o N>3f
* Minimum requirement of N=3f+1

33

PBFT in rough

request pre-prepare prepare

N XA)]

client

primary

backupl _ . VA

backup2 ST A AN VTN

backup3

* A client sends a service
request to the primary

* (Request, 0, t,c)s c

0: requested operation
t: timestamp

c: client identity
(message)s_c: message

signed by c
request ||pre-prepare| prepare commit reply
client
primary __
NS
backupl _ NG,
NS Z-
LR 7N XX
backup2
backup3

Phase 1. Pre-prepare

* The primary assigns a unigue
sequence number and

multicasts this message to all
backups

e (PRE-PREPARE, v, n, d)s_p, m)
e v:view number
* n:seqguence number
* d: m’s digest
* m: client’s requested message

request| | pre-prepare| | prepare commit reply
client

primary \ T

! Y,
backupl : _ %Y}i
A7 | XL /)
backup2 fvl,i'L ?"A‘%'
backup3 ‘ \ / \\‘

Phase 1. Pre-prepare

* A backup will accept the message iff
* v, n, d are valid
* nis between h and H, h = lower bound, H = upper bound
 digest(m) is different from digest of other messages

37

Phase 2. Prepare

* |f backup i accepts PRE-
PREPARE message, it enters
the prepare phase by
multicasting PREPARE
message to all other backups

« (PREPARE, v, n, d, i)s_i

* i: backup number

request | pre-preparfe| prepare commit reply
client

primary \ r~ 4
N
backupl \ .4‘\”..

backup2
N\

backup3

Phase 2. Prepare

* Prepared(m, v, n, i) is true iff backup i
* PRE-PREPARE for message m has been received

e 2f + 1 (including itself) distinct and valid PREPARE
messages received

2f+1
2f+1

39

Phase 3: Commit

* Backup i multicasts a
COMMIT message to the
other backups when
prepared(m, v, n, i) becomes
true

e (COMMIT, v, n,d,i)s i

request | pre-prepare| prepare commit reply
client

primary

backupl

7 '\‘1’)4
| 26K

backup?2 SN
backup3 /, \\‘

Phase 3: Commit

e committed(m, v, n) is true iff

e prepared(m, v, n, i) is true for all i in some setof f + 1
non-faulty backups

 committed-local(m, v, n, i) is true iff
e prepared(m, v, n, i) is true

i has accepted 2f + 1 commits (including itself) from
different backups

41

* Each backup i executes the operation requested by
client

» After executing the operation, backups send a reply
to the client

 (REPLY, v, t, c,i, r)s_i

* r: execution result

* Client waits for f+1 replies

request | pre-prepare| prepare commit reply
client

primary

RS ' X XA
WV

backupl

backup2 \

backup3

Checkpoint

* Every node saves a log of Pre-prepare, Prepare,
Commit in their storage
* Reason: nodes may miss some messages
* Problem: limited storage size

* Solution: make a checkpoint and discard the message
below the checkpoint

43

Checkpoint

* Step
e Multicast (CHECKPOINT, n, d, i)s i
* Collect 2f + 1 CHECKPOINT messages

» After completing each checkpoint, discard the messages

below n

e update the bound of sequence number

* lower boundh=n
e upper bound H =n +k, k = some constant k

Checkpoint

primary

backupl

44

View Changes

* Backups monitor the primary to prevent faulty
primaries

* Backups propose a view change when a timer
expires

* View change protocol is started if 2f+1 backups do not
have a valid message from the primary v within the
timer

view-change | view-change-ack new-view

primary{v}

backupl(v+1)

backup2(v+2)
backup3(v+3) \

View Changes

e Multicast (VIEW-CHANGE, v+1,n, C, P, Q, i)S i
* n: sequence number of current checkpoint
e C: 2f checkpoint messages
e P:set of Pre-prepared(m, v, 'n, i), n>n, n = "n sequence
number, n = current checkpoint
e Q: set of Prepared(m, v, 'n, i), n>n, n = "n sequence
number, n = current checkpoint

view-change | view-change-ack new-view

primary{v}

backupl(v+1)

backup2(v+2)

backup3(v+3) \

View Changes

* If v+1 node collects 2f+1 view-change messages,
the node proposes (NEW-VIEW, v+1, V, O)s_v+1
e V: 2f+1 VIEW-CHANGE messages
* O: set of PRE-PREPARE messages

* If v+1 node misses some messages, the node is able
to update the messages from O

view-change | view-change-ack new-view

primary{v}

backupl(v+1)

backup2(v+2)
backup3(v+3) \

View Changes

Last stable checkpoint Sequence #in P

1(new primary) 100 190
2 200 200
3 200 200

4 200 200

48

Is PBFT a perfect solution?

e Of course not

e Delay since every node has to reach consensus at
every phase

* TrafficTN(O(n”2) for total traffic, O(N) for each node)

* Will it be okay, since it will be used in a private
blockchain?

* Hyperledger fabric has changed PBFT to Kafka when
they updated their version from v0.6 to v1.0

49

Hyperledger Fabric

Architecture

Hyperledger fabric architecture

APIls, SDKs, CLI
MEMBERSHIP BLOCKCHAIN TRANSACTIONS CHAINCODE
Membt_arshlp Blockchain Services Cham_c ode
Services Services
Reglstration Consensus Distributed Secure

Manager Ledger Container

Identity

Management

P2P Ledger Secure

Auditability pistees Storage Registry

Event Stream

Services

51

* Committing Peer
* Validation and commit of the block

* Endorsing Peer
e Give transaction endorsement to the client

 Orderer
 Get the transaction from clients and deliver to the kafka cluster

e Kafka

* Order delivered transactions, create a new block with
the transactions, and deliver the block to the orderer

52

Channel & MSP

e Channel

* Ensure privacy and confidentiality between organizations
* No data can be shared between different channels

* MSP

* PKI based certification management system

=E A A|E| |- |E|E

Root CAs Organizational Revoked Keystore TLS
Units Certificates (private Intermediate
Intermediate Signing keys) TLS CAs

CAs Asiminictrstors Certificates Root CAs

Transaction Flow

H
4. Executes the chaincode

N

chaincode

9. Returns that the transaction
Is applied to the ledger

2. Connects to the peer

=

ledger
3. Invokes chaincode

I E‘L —
e emplen

1. Sends a transaction

5. Returns the transaction
with endorsement

(—— . eer]

*

6. Request to order o*

the transaction - “" _,.---------ﬁ
* mun®

“‘::IIIIIIIIIIIII -*-
8. Broadcasts the peer2
-*- new bIOCk -*-
orderer peer3

L

7. Creates a new block containing
the requested transaction

54

Does PBFT exist in fabric?

* No, because serious scalability problems that were
encountered when fabric used PBFT in v0.6

Generating too many traffic

request | | pre-prepare| prepare commit reply

client

| i

74
NS 2L/

PRI

primary

backupl

backup?2

backup3

55

Ordering Service

* No consensus, but ordering service

» Kafka: provides Crash fault tolerant
* No BFT exists in consensus algorithm

— =
peerl peer2

l T1 T2 1
AR AR
BN B

Kafka cluster
LR L]
S| e & |X
— A -
- mo mo AR I\
QOrder the transaction Broker Brelar m —
T) addee) T
orderer3 peer3
mo
Broke
M ER
m B E2
@ W
Lﬂ.:..

56

Create a new block

Conclusion

* The most popular private blockchain project is
Hyperledger fabric

e Other hyperledger projects have not reached v1.0 yet

* PBFT is the most popular consensus algorithm in
private blockchains

* It is useful for small scale blockchain platforms

* Hyperledger fabric has no BFT-based consensus yet

» Serious scalability problems were encountered when fabric
used PBFT in v0.6

* There are plans to implement BFT based consensus to the
upcoming version of fabric

57

Thank you

