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Overview

• Private Blockchain
• Understanding Private Blockchain
• Hyperledger Project

• PBFT
• FLP Impossibility
• Two Generals Problem & Byzantine Generals Problem
• Byzantine Fault Tolerance
• Practical Byzantine Fault Tolerance

• Hyperledger Fabric
• Architecture
• Transaction Flow
• Consensus 
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Private Blockchain Overview
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Public Blockchain Network

• Public Blockchain
• Low performance 

• Visible to all 

• Writable by all 

Unauthorized 
group

R/W

Blockchain in Enterprises

Not appropriate for enterprises purpose!



Blockchain In enterprises
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• Private Blockchain
• Better performance

• Centralized governance

• Visible to authorized users

• Writable by authorized users

Private Blockchain Network

Authorized 
group

R/W



Case
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• What if Alice company, the stakeholders, and SEC 
establish the consortium to watch over Alice 
company’s account ledger?



In the case of legacy database
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• Hard to find any evidence of cheating
• Alice may operate the account ledger DB

• It will be easy to modify the account ledger

Alice company StakeholderSEC

DB for Account Ledger

…



In the case of public blockchain
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• Clear evidence of any changes or modifications 
since all data are recorded and modified under the 
consortium’s agreement, but…

• Poor performance

• Anyone can have access to sensitive data 



In the case of private blockchain
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• Clear evidence of any changes or modifications 
since all data are recorded and modified under the 
consortium’s agreement, and

• Better performance

• Only authorized organizations have access to the 
data



Hyperledger Project

Hyperledger Frameworks

Hyperledger Tools
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Hyperledger Project

• Hyperledger is an open source collaborative effort 
created to advance cross-industry blockchain 
technologies.

• Many Hyperledger projects are actively being 
developed by IBM
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Hyperledger Frameworks

• Hyperledger Business blockchain frameworks
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Hyperledger Tools

• Software used for deploying, maintaining, and 
examining blockchain networks

• Most projects have not reached v1.0 yet
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PBFT

FLP Impossibility

Two Generals’ Problem

Byzantine Generals’ Problem

Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance
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FLP impossibility
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FLP Impossibility
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• Paper
• Impossibility of Distributed Consensus with One Faulty 

Process, by Fischer, Lynch, and Paterson (1985)



FLP Impossibility
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• Validity (Safety) 
• The value agreed upon must have been proposed by 

some

• Agreement (Safety)
• All deciding processes agree on the same value

• Termination (Liveness)
• At least one non-faulty process eventually decides

• Distribute consensus is impossible when at least 
one process might fail

• Choose at most two!



FLP Impossibility
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• Liveness over Safety
• ex) Proof of Work (e.g. Bitcoin, Ethereum, etc.)

• Lottery-based algorithm

• The longest chain rule (Liveness ↑)

• The longest chain can be wrong (Safety ↓)

• Safety over Liveness
• PBFT (e.g. Tendermint, Hyperledger Indy, etc.)

• Voting-based algorithm

• Block after consensus is hard to be modified (Safety ↑)

• Transactions may not be delivered (Liveness ↓)



Two Generals’ Problem & 
Byzantine Generals’ Problem
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Two Generals’ Problem

• “Some Constraints and Tradeoffs in The Design of 
Network Communications”, E. A. Akkoyunlu, K. 
Ekanadham, and R. V. Huber (1975)  
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Two Generals’ Problem
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• Two generals need to attack the enemy at the same 
time

• Consensus message is sent across the enemy’s territory

• A sends B the consensus msg
• A has no way of knowing if the 

message was received by B
• A has no way of knowing if the 

message was forged by the 
enemy

• B sends A the response message
• B also has no way of knowing if 

the message was received by A
• B also has no way of knowing if 

the message was forged by the 
Enemy

• No way to reach consensus 
between A and B

Consensus
Msg

A B



BGP (Byzantine Generals Problem)

• "The Byzantine Generals Problem“, Lamport, L.; 
Shostak, R.; Pease, M. (1982). ACM Transactions on 
Programming Languages and Systems
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BGP (Byzantine Generals Problem)
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• More than two generals need to attack the enemy 
at the same time

• Same problems as the Two Generals’ Problems



Practical Byzantine Fault 
Tolerance
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BFT (Byzantine Fault Tolerance)
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• Byzantine Fault
• May represent general attack on the system or system 

error

• Byzantine Failure
• The loss of a system service due to Byzantine Fault

• Byzantine Fault Tolerance
• A system that is resilient/tolerant of a Byzantine Fault



PBFT (Practical Byzantine Fault Tolerance)

26

• Paper
• "Practical Byzantine Fault Tolerance and Proactive 

Recovery“, Castro, M.; Liskov, B. (2002). ACM 
Transactions on Computer Systems.



PBFT (Practical Byzantine Fault Tolerance)
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• System Model
• Allows asynchronous network

• Possible faults 

• failure to deliver messages

• delayed messages

• delivery out of order

• Byzantine faults

• Node failure is independent

• Assume eventual time bounds for liveness

• N = 3f+1, N = # of nodes in the network, f = # of Faulty 
nodes



Why N = 3f+1?
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• Assume N = 2f+1, f = 1

• Client is waiting for f+1 responses

N1

N2N3

Client

bool(x)



Why N = 3f+1?
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• Assume N = 2f+1, f = 1

• Client is waiting for f+1 responses

N1

N2system error!

Client

bool(x)

bool(x) = true

bool(x) = truebool(x) = ?



Why N = 3f+1?
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• Assume N = 2f+1, f = 1

• Client is waiting for f+1 responses

N1

ByzantineN3

Client

bool(x)

bool(x) = true

bool(x) = Falsebool(x) = ?



Why N = 3f+1?
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• Assume N = 3f+1, f = 1

• Client is waiting for f+1 responses

N1

ByzantineN4

Client

bool(x)

bool(x) = true

bool(x) = Falsebool(x) = True

N2

bool(x) = true

true



Why N = 3f+1?
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• Assume N = 3f+1, f = 1

• Client is waiting for f+1 responses

N1

ByzantineN4

Client

bool(x)

bool(x) = true

bool(x) = Falsebool(x) = ??

N2

bool(x) = true

true



Why N= 3f + 1?

• When the message is not sent
• Consensus should be reached among (N-f)

• f = node whose message is not sent

• When the message is sent with wrong information
• Consensus can be reached only when N-f-f > f

• f = node whose message has wrong information

• N>3f

• Minimum requirement of N=3f+1
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PBFT in rough
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Request
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• A client sends a service 
request to the primary

• (Request, o, t, c)s_c
• o: requested operation

• t: timestamp

• c: client identity

• (message)s_c: message 
signed by c



Phase 1: Pre-prepare
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• The primary assigns a unique 
sequence number and 
multicasts this message to all 
backups

• (PRE-PREPARE, v, n, d)s_p, m)
• v: view number

• n: sequence number

• d: m’s digest

• m: client’s requested message



Phase 1: Pre-prepare
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• A backup will accept the message iff
• v, n, d are valid

• n is between h and H, h = lower bound, H = upper bound

• digest(m) is different from digest of other messages



Phase 2: Prepare
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• If backup i accepts PRE-
PREPARE message, it enters 
the prepare phase by 
multicasting PREPARE 
message to all other backups

• (PREPARE, v, n, d, i)s_i
• i: backup number



Phase 2: Prepare
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• Prepared(m, v, n, i) is true iff backup i
• PRE-PREPARE for message m has been received

• 2f + 1 (including itself) distinct and valid PREPARE 
messages received

N1 N2 N3 N4

2f+1
2f+1



Phase 3: Commit
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• Backup i multicasts a 
COMMIT message to the 
other backups when 
prepared(m, v, n, i) becomes 
true

• (COMMIT, v, n, d, i)s_i



Phase 3: Commit
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• committed(m, v, n) is true iff
• prepared(m, v, n, i) is true for all i in some set of f + 1 

non-faulty backups

• committed-local(m, v, n, i) is true iff
• prepared(m, v, n, i) is true

• i has accepted 2f + 1 commits (including itself) from 
different backups



Reply
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• Each backup i executes the operation requested by 
client

• After executing the operation, backups send a reply 
to the client

• (REPLY, v, t, c, i, r)s_i
• r: execution result

• Client waits for f+1 replies



Checkpoint
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• Every node saves a log of Pre-prepare, Prepare, 
Commit in their storage

• Reason: nodes may miss some messages

• Problem: limited storage size

• Solution: make a checkpoint and discard the message 
below the checkpoint



Checkpoint
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• Step
• Multicast (CHECKPOINT, n, d, i)s_i

• Collect 2f + 1 CHECKPOINT messages

• After completing each checkpoint, discard the messages 
below n

• update the bound of sequence number
• lower bound h = n

• upper bound H = n + k, k = some constant k 

Checkpoint
primary

backup1

backup2

backup3



View Changes
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• Backups monitor the primary to prevent faulty 
primaries

• Backups propose a view change when a timer 
expires

• View change protocol is started if 2f+1 backups do not 
have a valid message from the primary v within the 
timer



View Changes
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• Multicast (VIEW-CHANGE, v+1, n, C, P, Q, i)S_i
• n: sequence number of current checkpoint

• C: 2f checkpoint messages

• P: set of Pre-prepared(m, v, `n, i), `n>n, n = `n sequence 
number, n = current checkpoint

• Q: set of Prepared(m, v, `n, i), `n>n, n = `n sequence 
number, n = current checkpoint



View Changes
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• If v+1 node collects 2f+1 view-change messages, 
the node proposes (NEW-VIEW, v+1, V, O)s_v+1

• V: 2f+1 VIEW-CHANGE messages

• O: set of PRE-PREPARE messages

• If v+1 node misses some messages, the node is able 
to update the messages from O



View Changes
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Node # Last stable checkpoint Sequence # in P

1(new primary) 100 190

2 200 200

3 200 200

4 200 200



Is PBFT a perfect solution?

• Of course not
• Delay↑ since every node has to reach consensus at 

every phase

• Traffic↑(O(n^2) for total traffic, O(N) for each node)

• Will it be okay, since it will be used in a private 
blockchain?

• Hyperledger fabric has changed PBFT to Kafka when 
they updated their version from v0.6 to v1.0
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Hyperledger Fabric
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Architecture
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Nodes
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• Committing Peer
• Validation and commit of the block

• Endorsing Peer
• Give transaction endorsement to the client

• Orderer
• Get the transaction from clients and deliver to the kafka cluster

• Kafka
• Order delivered transactions, create a new block with 

the transactions, and deliver the block to the orderer



Channel & MSP
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• Channel
• Ensure privacy and confidentiality between organizations

• No data can be shared between different channels

• MSP
• PKI based certification management system



Transaction Flow
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User A

DApp

R
E
S
T

S
D
K

chaincode

ledger

peer1

1. Sends a transaction
2. Connects to the peer

3. Invokes chaincode

4. Executes the chaincode

5. Returns the transaction
with endorsement

peer2

peer3orderer

6. Request to order 
the transaction

7. Creates a new block containing
the requested transaction

8. Broadcasts the
new block

9. Returns that the transaction
Is applied to the ledger



Does PBFT exist in fabric?

• No, because serious scalability problems that were 
encountered when fabric used PBFT in v0.6
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request pre-prepare prepare commit reply
client

primary

backup1

backup2

backup3

Generating too many traffic



Ordering Service
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• No consensus, but ordering service
• Kafka: provides Crash fault tolerant

• No BFT exists in consensus algorithm



Conclusion

• The most popular private blockchain project is 
Hyperledger fabric

• Other hyperledger projects have not reached v1.0 yet

• PBFT is the most popular consensus algorithm in 
private blockchains

• It is useful for small scale blockchain platforms

• Hyperledger fabric has no BFT-based consensus yet
• Serious scalability problems were encountered when fabric 

used PBFT in v0.6
• There are plans to implement BFT based consensus to the 

upcoming version of fabric
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Thank you
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