
Private Blockchain & PBFT

Daegeun Yoon
KAIST, Electrical engineering department

2019/03/13

Overview

• Private Blockchain
• Understanding Private Blockchain
• Hyperledger Project

• PBFT
• FLP Impossibility
• Two Generals Problem & Byzantine Generals Problem
• Byzantine Fault Tolerance
• Practical Byzantine Fault Tolerance

• Hyperledger Fabric
• Architecture
• Transaction Flow
• Consensus

2

Private Blockchain Overview

3

4
Public Blockchain Network

• Public Blockchain
• Low performance

• Visible to all

• Writable by all

Unauthorized
group

R/W

Blockchain in Enterprises

Not appropriate for enterprises purpose!

Blockchain In enterprises

5

• Private Blockchain
• Better performance

• Centralized governance

• Visible to authorized users

• Writable by authorized users

Private Blockchain Network

Authorized
group

R/W

Case

6

• What if Alice company, the stakeholders, and SEC
establish the consortium to watch over Alice
company’s account ledger?

In the case of legacy database

7

• Hard to find any evidence of cheating
• Alice may operate the account ledger DB

• It will be easy to modify the account ledger

Alice company StakeholderSEC

DB for Account Ledger

…

In the case of public blockchain

8

• Clear evidence of any changes or modifications
since all data are recorded and modified under the
consortium’s agreement, but…

• Poor performance

• Anyone can have access to sensitive data

In the case of private blockchain

9

• Clear evidence of any changes or modifications
since all data are recorded and modified under the
consortium’s agreement, and

• Better performance

• Only authorized organizations have access to the
data

Hyperledger Project

Hyperledger Frameworks

Hyperledger Tools

10

Hyperledger Project

• Hyperledger is an open source collaborative effort
created to advance cross-industry blockchain
technologies.

• Many Hyperledger projects are actively being
developed by IBM

11

Hyperledger Frameworks

• Hyperledger Business blockchain frameworks

12

Hyperledger Tools

• Software used for deploying, maintaining, and
examining blockchain networks

• Most projects have not reached v1.0 yet
13

PBFT

FLP Impossibility

Two Generals’ Problem

Byzantine Generals’ Problem

Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance

14

FLP impossibility

15

FLP Impossibility

16

• Paper
• Impossibility of Distributed Consensus with One Faulty

Process, by Fischer, Lynch, and Paterson (1985)

FLP Impossibility

17

• Validity (Safety)
• The value agreed upon must have been proposed by

some

• Agreement (Safety)
• All deciding processes agree on the same value

• Termination (Liveness)
• At least one non-faulty process eventually decides

• Distribute consensus is impossible when at least
one process might fail

• Choose at most two!

FLP Impossibility

18

• Liveness over Safety
• ex) Proof of Work (e.g. Bitcoin, Ethereum, etc.)

• Lottery-based algorithm

• The longest chain rule (Liveness ↑)

• The longest chain can be wrong (Safety ↓)

• Safety over Liveness
• PBFT (e.g. Tendermint, Hyperledger Indy, etc.)

• Voting-based algorithm

• Block after consensus is hard to be modified (Safety ↑)

• Transactions may not be delivered (Liveness ↓)

Two Generals’ Problem &
Byzantine Generals’ Problem

19

Two Generals’ Problem

• “Some Constraints and Tradeoffs in The Design of
Network Communications”, E. A. Akkoyunlu, K.
Ekanadham, and R. V. Huber (1975)

20

Two Generals’ Problem

21

• Two generals need to attack the enemy at the same
time

• Consensus message is sent across the enemy’s territory

• A sends B the consensus msg
• A has no way of knowing if the

message was received by B
• A has no way of knowing if the

message was forged by the
enemy

• B sends A the response message
• B also has no way of knowing if

the message was received by A
• B also has no way of knowing if

the message was forged by the
Enemy

• No way to reach consensus
between A and B

Consensus
Msg

A B

BGP (Byzantine Generals Problem)

• "The Byzantine Generals Problem“, Lamport, L.;
Shostak, R.; Pease, M. (1982). ACM Transactions on
Programming Languages and Systems

22

BGP (Byzantine Generals Problem)

23

• More than two generals need to attack the enemy
at the same time

• Same problems as the Two Generals’ Problems

Practical Byzantine Fault
Tolerance

24

BFT (Byzantine Fault Tolerance)

25

• Byzantine Fault
• May represent general attack on the system or system

error

• Byzantine Failure
• The loss of a system service due to Byzantine Fault

• Byzantine Fault Tolerance
• A system that is resilient/tolerant of a Byzantine Fault

PBFT (Practical Byzantine Fault Tolerance)

26

• Paper
• "Practical Byzantine Fault Tolerance and Proactive

Recovery“, Castro, M.; Liskov, B. (2002). ACM
Transactions on Computer Systems.

PBFT (Practical Byzantine Fault Tolerance)

27

• System Model
• Allows asynchronous network

• Possible faults

• failure to deliver messages

• delayed messages

• delivery out of order

• Byzantine faults

• Node failure is independent

• Assume eventual time bounds for liveness

• N = 3f+1, N = # of nodes in the network, f = # of Faulty
nodes

Why N = 3f+1?

28

• Assume N = 2f+1, f = 1

• Client is waiting for f+1 responses

N1

N2N3

Client

bool(x)

Why N = 3f+1?

29

• Assume N = 2f+1, f = 1

• Client is waiting for f+1 responses

N1

N2system error!

Client

bool(x)

bool(x) = true

bool(x) = truebool(x) = ?

Why N = 3f+1?

30

• Assume N = 2f+1, f = 1

• Client is waiting for f+1 responses

N1

ByzantineN3

Client

bool(x)

bool(x) = true

bool(x) = Falsebool(x) = ?

Why N = 3f+1?

31

• Assume N = 3f+1, f = 1

• Client is waiting for f+1 responses

N1

ByzantineN4

Client

bool(x)

bool(x) = true

bool(x) = Falsebool(x) = True

N2

bool(x) = true

true

Why N = 3f+1?

32

• Assume N = 3f+1, f = 1

• Client is waiting for f+1 responses

N1

ByzantineN4

Client

bool(x)

bool(x) = true

bool(x) = Falsebool(x) = ??

N2

bool(x) = true

true

Why N= 3f + 1?

• When the message is not sent
• Consensus should be reached among (N-f)

• f = node whose message is not sent

• When the message is sent with wrong information
• Consensus can be reached only when N-f-f > f

• f = node whose message has wrong information

• N>3f

• Minimum requirement of N=3f+1

33

PBFT in rough

34

Request

35

• A client sends a service
request to the primary

• (Request, o, t, c)s_c
• o: requested operation

• t: timestamp

• c: client identity

• (message)s_c: message
signed by c

Phase 1: Pre-prepare

36

• The primary assigns a unique
sequence number and
multicasts this message to all
backups

• (PRE-PREPARE, v, n, d)s_p, m)
• v: view number

• n: sequence number

• d: m’s digest

• m: client’s requested message

Phase 1: Pre-prepare

37

• A backup will accept the message iff
• v, n, d are valid

• n is between h and H, h = lower bound, H = upper bound

• digest(m) is different from digest of other messages

Phase 2: Prepare

38

• If backup i accepts PRE-
PREPARE message, it enters
the prepare phase by
multicasting PREPARE
message to all other backups

• (PREPARE, v, n, d, i)s_i
• i: backup number

Phase 2: Prepare

39

• Prepared(m, v, n, i) is true iff backup i
• PRE-PREPARE for message m has been received

• 2f + 1 (including itself) distinct and valid PREPARE
messages received

N1 N2 N3 N4

2f+1
2f+1

Phase 3: Commit

40

• Backup i multicasts a
COMMIT message to the
other backups when
prepared(m, v, n, i) becomes
true

• (COMMIT, v, n, d, i)s_i

Phase 3: Commit

41

• committed(m, v, n) is true iff
• prepared(m, v, n, i) is true for all i in some set of f + 1

non-faulty backups

• committed-local(m, v, n, i) is true iff
• prepared(m, v, n, i) is true

• i has accepted 2f + 1 commits (including itself) from
different backups

Reply

42

• Each backup i executes the operation requested by
client

• After executing the operation, backups send a reply
to the client

• (REPLY, v, t, c, i, r)s_i
• r: execution result

• Client waits for f+1 replies

Checkpoint

43

• Every node saves a log of Pre-prepare, Prepare,
Commit in their storage

• Reason: nodes may miss some messages

• Problem: limited storage size

• Solution: make a checkpoint and discard the message
below the checkpoint

Checkpoint

44

• Step
• Multicast (CHECKPOINT, n, d, i)s_i

• Collect 2f + 1 CHECKPOINT messages

• After completing each checkpoint, discard the messages
below n

• update the bound of sequence number
• lower bound h = n

• upper bound H = n + k, k = some constant k

Checkpoint
primary

backup1

backup2

backup3

View Changes

45

• Backups monitor the primary to prevent faulty
primaries

• Backups propose a view change when a timer
expires

• View change protocol is started if 2f+1 backups do not
have a valid message from the primary v within the
timer

View Changes

46

• Multicast (VIEW-CHANGE, v+1, n, C, P, Q, i)S_i
• n: sequence number of current checkpoint

• C: 2f checkpoint messages

• P: set of Pre-prepared(m, v, `n, i), `n>n, n = `n sequence
number, n = current checkpoint

• Q: set of Prepared(m, v, `n, i), `n>n, n = `n sequence
number, n = current checkpoint

View Changes

47

• If v+1 node collects 2f+1 view-change messages,
the node proposes (NEW-VIEW, v+1, V, O)s_v+1

• V: 2f+1 VIEW-CHANGE messages

• O: set of PRE-PREPARE messages

• If v+1 node misses some messages, the node is able
to update the messages from O

View Changes

48

Node # Last stable checkpoint Sequence # in P

1(new primary) 100 190

2 200 200

3 200 200

4 200 200

Is PBFT a perfect solution?

• Of course not
• Delay↑ since every node has to reach consensus at

every phase

• Traffic↑(O(n^2) for total traffic, O(N) for each node)

• Will it be okay, since it will be used in a private
blockchain?

• Hyperledger fabric has changed PBFT to Kafka when
they updated their version from v0.6 to v1.0

49

Hyperledger Fabric

50

Architecture

51

Nodes

52

• Committing Peer
• Validation and commit of the block

• Endorsing Peer
• Give transaction endorsement to the client

• Orderer
• Get the transaction from clients and deliver to the kafka cluster

• Kafka
• Order delivered transactions, create a new block with

the transactions, and deliver the block to the orderer

Channel & MSP

53

• Channel
• Ensure privacy and confidentiality between organizations

• No data can be shared between different channels

• MSP
• PKI based certification management system

Transaction Flow

54

User A

DApp

R
E
S
T

S
D
K

chaincode

ledger

peer1

1. Sends a transaction
2. Connects to the peer

3. Invokes chaincode

4. Executes the chaincode

5. Returns the transaction
with endorsement

peer2

peer3orderer

6. Request to order
the transaction

7. Creates a new block containing
the requested transaction

8. Broadcasts the
new block

9. Returns that the transaction
Is applied to the ledger

Does PBFT exist in fabric?

• No, because serious scalability problems that were
encountered when fabric used PBFT in v0.6

55

request pre-prepare prepare commit reply
client

primary

backup1

backup2

backup3

Generating too many traffic

Ordering Service

56

• No consensus, but ordering service
• Kafka: provides Crash fault tolerant

• No BFT exists in consensus algorithm

Conclusion

• The most popular private blockchain project is
Hyperledger fabric

• Other hyperledger projects have not reached v1.0 yet

• PBFT is the most popular consensus algorithm in
private blockchains

• It is useful for small scale blockchain platforms

• Hyperledger fabric has no BFT-based consensus yet
• Serious scalability problems were encountered when fabric

used PBFT in v0.6
• There are plans to implement BFT based consensus to the

upcoming version of fabric

57

Thank you

58

